
Magnetism in MnPSe3: a layered 3d5 antiferromagnet with unusually large XY anisotropy

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys.: Condens. Matter 11 3563

(http://iopscience.iop.org/0953-8984/11/17/314)

Download details:

IP Address: 171.66.16.214

The article was downloaded on 15/05/2010 at 11:26

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/11/17
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 11 (1999) 3563–3570. Printed in the UK PII: S0953-8984(99)99385-2

Magnetism in MnPSe3: a layered 3d5 antiferromagnet with
unusually large XY anisotropy

P Jeevanandam and S Vasudevan
Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India

Received 16 November 1998, in final form 9 February 1999

Abstract. The anisotropic magnetic susceptibilities of single crystals of the isostructural layered
antiferromagnets, MnPS3 (TN = 78 K) and MnPSe3 (TN = 74 K), have been measured as
functions of temperature. In both compounds, divalent manganese is present in the high-spin
S = 5/2 state. The anisotropies in the susceptibilities of the two are, however, very different;
while the susceptibility of MnPS3 is isotropic, that of MnPSe3 shows a large XY anisotropy,
unusual for a manganese compound. The anisotropic susceptibilities are described by the zero-
field spin Hamiltonian: H = DS2

iz − ∑
Jij

�Si · �Sj with the quadratic single-ion anisotropy term
introducing anisotropy in an otherwise isotropic situation. The exchange J and the single-ion zero-
field-splitting (ZFS) parameter D were evaluated using the correlated effective-field theory of Lines.
For MnPSe3, J/k = −5.29 K and D/k = 26.6 K, while for isotropic MnPS3, J/k = −8.1 K. It
is suggested that the large value of the ZFS parameter for MnPSe3 as compared to MnPS3 could
be due to the large ligand spin–orbit contribution of the heavier selenium.

1. Introduction

Among low-dimensional magnetic systems, the insulating layered transition metal
chalcogenophosphates, MPX3 (M = Mn, Fe, Ni and X = S or Se) are unique; they represent
one of the few known layered systems in which both the magnetic and the crystallographic
lattices are two dimensional (2D) [1, 2]. Unlike most other 2D magnetic systems wherein
magnetic layers are separated by diamagnetic layers, in the metal chalcogenophosphates the
magnetic MPX3 layers are separated by a van der Waals gap. The presence of the gap rules
out superexchange pathways and, since the interlayer metal–metal distance is of the order of
∼6.5 Å, direct exchange, too, would be negligible; the chalcogenophosphates are hence nearly
perfect 2D magnetic systems.

Anisotropic magnetic susceptibilities of MPS3, M = Mn, Fe and Ni, have been reported
[3]. All three are insulating antiferromagnets with the magnetic lattice being the 2D honey-
comb. A remarkable feature of the magnetism in these compounds is that, although they are
isostructural, the spin dimensionalities of the three are different. While MnPS3 is best described
by the isotropic Heisenberg Hamiltonian, FePS3 is most effectively treated by the Ising model
and NiPS3 by the anisotropic or XY Heisenberg Hamiltonian [3]. In the transition metal
chalcogenophosphates, metal–ligand interactions are ionic [4] and the d-electron manifold
is adequately described by ligand-field theory [5]. The magnetic anisotropy was shown to
be a consequence of zero-field splitting (ZFS) of the metal-ion ground state arising from a
combination of spin–orbit coupling and the axial crystal field due to a trigonal distortion of
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the MS6 octahedra. The effective spin Hamiltonian for such a system is

H = −
∑
ij

Jij
�Si · �Sj +

∑
i

DS2
iz (1)

with the ZFS term, DS2
iz, introducing anisotropy in an otherwise isotropic situation. Depending

on the sign and magnitude of D, a preference for the spins to align parallel (Ising) or
perpendicular (XY ) to the z-axis can be established.

In this paper we report that for the manganese compound, MnPX3, changing X from S
to Se causes a change in the spin dimensionality. Both are S = 5/2 antiferromagnets, with
TN = 78 K and 74 K respectively. The in-layer structures of MnPS3 and MnPSe3 are identical;
they differ only in the layer-stacking sequence [2, 6]. Earlier neutron diffraction studies
had shown that the magnetic moments of the two compounds are similar and the orderings
in the Néel state identical [6–8]. We have carried out single-crystal magnetic susceptibility
measurements on MnPS3 and MnPSe3. The paramagnetic susceptibility of MnPS3 is isotropic;
that of MnPSe3, however, shows a marked XY anisotropy. The results are interesting since the
zero-field splitting for the orbital singlet 6S ground state of the Mn2+ ion is usually small, and
consequently the magnetism in manganese compounds is isotropic and the behaviour is well
described by the Heisenberg Hamiltonian (D = 0 in equation (1)) [9]. These two isostructural
compounds provide a rare example in which changing the ligand causes no change in the
magnetic properties other than a change in spin dimensionality.

2. Experimental procedure

MnPS3 and MnPSe3 were synthesized under vacuum from the corresponding elements [1,
2]. Single crystals were grown by chemical vapour transport in a two-zone furnace using
excess chalcogen or iodine as the transporting agent. For MnPS3 the temperatures of the two
zones were 630 K and 580 K while for MnPSe3 they were 650 K and 600 K. Large hexagonal
platelet crystals were obtained: transparent pale green crystals of MnPS3 and transparent
wine-red crystals of MnPSe3. Low-temperature optical spectra were recorded on a Hitachi
U3400 spectrophotometer. The band-gap energies found from the optical absorption spectra
are 2.7 eV for MnPS3 and 2.4 eV for MnPSe3.

Magnetic susceptibility measurements were made on a Faraday magnetic balance.
Temperatures in the range 30–340 K were obtained using a closed-cycle cryostat (Air Products).
The susceptometer was calibrated using Hg[Co(NCS)4] as a standard. The crystals were
suspended from the balance by an arrangement similar to that reported in [10]. The arrange-
ment allowed measurements of the susceptibilities for different orientations of the crystal with
respect to the field. The susceptibilities reported are for two directions—the field parallel
and perpendicular to the trigonal axis. The trigonal axis in MnPX3 (X = S, Se), the axis of
distortion of the MX6 polyhedra, is perpendicular to the layers.

3. Results and discussion

The temperature variation of the magnetic susceptibility of MnPS3 is shown in figure 1. Above
100 K the susceptibility is isotropic while below 100 K it is typical of 3D antiferromagnetic
ordering, χ‖ showing a sharp decrease, with χ⊥ remaining essentially constant. The anti-
ferromagnetic axis is thus collinear with the trigonal axis, in agreement with neutron diffraction
data [7]. The Néel temperature, defined as the temperature at which the slope of the χ–T curve
is maximum, is 78 K. The broad maximum of 120 K is due to spin–spin correlation typical of
low-dimensional magnetic systems. The exchange parameter, J , may be evaluated by fitting
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Figure 1. Magnetic susceptibilities of MnPS3 single crystals parallel (χ‖) and perpendicular (χ⊥)
to the trigonal axis. The dot–dashed curve is the fit to the HTSE susceptibility expression for
J/k = −8.1 K and g = 2.01. The solid curve is the calculated CEF susceptibility for the same
values of J/k and g.

the high-temperature series expansion (HTSE) susceptibility of a S = 5/2 2D Heisenberg
antiferromagnet [11] to the experimental data [3]. The expression for the HTSE susceptibility
is

χM = Ng2β2S(S + 1)

3kT

(
1 +

6∑
i=1

(−1)ibi(|J |/kT )i
)−1

. (2)

The bi are the expansion coefficients and for a honeycomb lattice may be evaluated using the
formulae of Rushbrook and Wood [11]. The dashed curve in figure 1 is the best fit obtained
for J/k = −8.1 K and g = 2.01.

The temperature-dependent susceptibility of MnPSe3, figure 2, shows a marked aniso-
tropy; even at the highest temperature, χ⊥ > χ‖ (the susceptibilities are defined with respect
to the trigonal axis of the MSe6 octahedra which is perpendicular to the basal plane). The
susceptibility shows a broad maximum at 100 K and an antiferromagnetic Néel temperature
of 74 K. In contrast to the case for MnPS3, it is χ⊥ which drops sharply below 100 K, with
χ‖ remaining essentially constant, implying that the antiferromagnetic axis in MnPSe3 lies in
the basal plane, perpendicular to the trigonal axis. The results are in agreement with neutron
diffraction data, which showed that while the magnetic ordering is identical for MnPS3 and
MnPSe3, in the latter the moments lie in the basal plane while in the former they lie along the
c-axis [6–8].

The anisotropy in the magnetic susceptibility of MnPSe3 originates from the ZFS of
the manganese ion arising from the axial trigonal distortion of the MnSe6 octahedra. Neutron
diffraction [6], as well as the present susceptibility values, indicates that the divalent manganese
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Figure 2. Magnetic susceptibilities of MnPSe3 single crystals for magnetic fields applied parallel
(χ‖) and perpendicular (χ⊥) to the trigonal axis. The solid curve is the best fit to the CEF
susceptibility expression for J/k = −5.29 K, D/k = 26.6 K, g‖ = 2.01 and g⊥ = 2.45.

Figure 3. Energy levels of an isolated Mn2+ ion (S = 5/2) in a trigonal crystal field for magnetic
fields applied parallel (Hz) and perpendicular (Hx ) to the trigonal axis. The zero-field splitting
parameter is D.

ion is present in the high-spin S = 5/2 (6S) state. Although the orbital angular momentum
for such a state is zero, it has been clearly established that a combination of spin–orbit and
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crystal-field effects can couple the 6S states to higher-lying multiplets, thereby giving rise to
the ZFS [12–15]. For example, while the D3 symmetry of the MnSe6 polyhedra leaves the
6A1g(6S) state unchanged, it lifts the degeneracy of the higher-lying 4T1 state. Inclusion of
spin–orbit coupling mixes the quartet and sextet states, since under D∗

3 they span the same
irreducible representations [15]. Such models have indeed been successful in accounting for
the ZFS of Mn2+ and Fe2+ ions doped in ionic crystals [12]. The effective spin Hamiltonian
describing magnetism in such systems is equation (1).

Any model used for estimating the ZFS and exchange parameters of MnPSe3 must be able
to account for the complicated energy level structure of the Mn2+ ion due to the ZFS (figure 3),
while at the same time it must be able to account for spin correlations which in these low-
dimensional systems are manifested at temperatures much higher thanTN . In this paper we have
used the correlated effective-field (CEF) approximation developed by Lines [16, 17] to analyse
the anisotropic susceptibility data for MnPSe3 and evaluate the ZFS and exchange parameters,
D and J . The CEF formalism is ideally suited for systems for which the excited crystal-field
energies, exchange energies and thermal energies are all of the same order of magnitude. The
model has been successfully used in analysing the high-temperature susceptibility of RbFeBr3

[18] and RbFeCl3 [19] as well as that of the transition metal thiophosphates [20, 21].
The CEF approximation is applicable to systems for which the total Hamiltonian may be

written as equation (1). The CEF approximation attempts to reduce the many-body problem
to a single-body non-interacting-ensemble form by the introduction of static, temperature-
dependent spin-correlation parameters, α, which are evaluated by forcing consistency with the
fluctuation-dissipation theorem [16]. In this model, the correlated effective field for the ith
spin, Si , is obtained by replacing each Sj in equation (1) by the sum of two contributions, one
its ensemble average, 〈Sj 〉, and the other a term proportional to the instantaneous deviation of
Si from its own averaged value 〈Si〉, i.e.

Sλ
j → 〈Sλ

j 〉 + αλ(Sλ
i − 〈Sλ

i 〉) (3)

where λ, in general, runs over the three cartesian coordinates, x, y and z, but because of the
axial symmetry of equation (1), would be either parallel or perpendicular to �z for the MPX3

compounds. Corresponding to this replacement, the effective Hamiltonian for the ith spin in
the high-temperature paramagnetic phase, where ensemble averages are zero, is

H0
i (eff) = DS2

iz −
∑

λ

∑
j

2J λ
ijα

λ(Sλ
i )2. (4)

The eigenfunctions and eigenvalues of H0
i (eff) are readily calculated as functions of the

correlation parameter, αλ. The correlated effective-field Hamiltonian, Hi (eff), may be
obtained by considering a static applied field, �H0, in the direction λ. Since the susceptibility
is diagonal in the coordinate system, all ensemble averages other than for the direction λ are
zero:

Hi (eff) = H0
i (eff) − gβH0S

λ
i −

∑
j

2J λ
ijS

λ
i (〈Sλ

j 〉 − αλ〈Sλ
i 〉). (5)

By considering the last two terms as a perturbation, the perturbed eigenvalues and eigen-
functions are obtained using first-order perturbation theory, and the ensemble average 〈Sλ

i 〉H
in the presence of the field calculated using Boltzmann statistics (the ensemble average 〈Sλ

i 〉0

in the absence of a field is zero in the paramagnetic phase):

kT 〈Sλ
i 〉H = gβH0〈Sλ

i : Sλ
i 〉0 +

∑
j

2J λ
ij [〈Sλ

j 〉H − αλ〈Sλ
i 〉H ]〈Sλ

i : Sλ
i 〉0. (6)
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The colon-product ensemble average in the above expression is defined by

〈Sλ
i : Sλ

i 〉0 =
∑

n

ρn

(
Sλ

nnS
λ
nn + 2kT

∑
m 	=n

Sλ
nmSλ

mn

Em − En

)
. (7)

The Sλ
nm are the matrix elements of the λth component of the ith spin connecting the nth and

mth eigenstates, En and Em are the eigen-energies of the respective levels and ρn is the density
matrix:

ρn = (e−Enα/kT )
/(∑

n

e−Enα/kT

)
. (8)

Using the fact that the zero-field averages 〈Sλ
i : Sλ

i 〉0 are site independent, equation (6) may
be Fourier transformed to give

kT 〈S(q)λ〉H = gβH0〈Sλ
i : Sλ

i 〉0 + 2[J (q)λ − αλJ λ(0)]〈S(q)λ〉H 〈Sλ
i : Sλ

i 〉0 (9)

where S(q) and J (q) are the Fourier transforms of the corresponding lattice quantities and
the momentum q lies in the first Brillouin zone. The susceptibility, defined by χλ(q) =
N〈S(q)λ〉/H0, may be written as

kT χi(q)λ = g2
λβ

2〈Sλ
i : Sλ

i 〉0 + Uλ(q) (10)

where

Uλ(q) = 2[J (q) − αλJ (0)]〈Sλ
i : Sλ

i 〉2
0

kT − 2[J (q) − αλJ (0)]〈Sλ
i : Sλ

i 〉0
. (11)

From the fluctuation theorem, we have
∑

q U(q) = 0 [16], which allows the complete det-
ermination of the correlation parameters, αλ:

αλ =
(∑

q

J (q){kT − 2[J (q) − αλJ (0)]〈Sλ : Sλ〉}−1

)

×
(∑

q

J (0){kT − 2[J (q) − αλJ (0)]〈Sλ : Sλ〉}−1

)−1

. (12)

Once αλ is obtained, the uniform static susceptibility follows directly as

χλ
layer = Ng2

λβ
2〈Sλ

i : Sλ
i 〉0

kT − 2zJ (0)(1 − αλ)〈Sλ
i : Sλ

i 〉0
. (13)

The weak interlayer coupling between the MnPX3 sheets was included using a mean-field
approximation:

χλ = χλ
layer

1 − 2J ′χλ
layer/Ng2

λβ
2

(14)

where J ′ is the interlayer coupling.
The susceptibilities were calculated using equation (12), after evaluation of the α-

parameters. The equations for αλ involve a summation over the Brillouin zone. We have
used the special-‘k’-point scheme of Chadi and Cohen [22] for obtaining the averages over the
Brillouin zone. For MnPS3 and MnPSe3, in which the Mn2+ ions form a honeycomb lattice,
the 6k-point set obtained by Cunningham for a 2D hexagonal lattice was used [23]. In these
compounds the direction λ is either parallel (‖) or perpendicular (⊥) to the trigonal axis.
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The colon products 〈Sλ
i : Sλ

i 〉0 in equation (11) for a Mn2+ ion (S = 5/2) were evaluated
from the eigenvalues and functions of Heff [17]. They are, for D′ = [D − zJ (α‖ −α⊥]/4kT ,

〈S‖
i : S

‖
i 〉 = (1/4)[exp(−D′) + 9 exp(−9D′) + 25 exp(−25D′)]

exp(−D′) + exp(−9D′) + exp(−25D′)
(15)

〈S⊥
i : S⊥

i 〉 = exp(−D′)(9D′ + 2) − (11/8) exp(−9D′) − (5/8) exp(−25D′)
(4D′)[exp(−D′) + exp(−9D′) + exp(−25D′)]

. (16)

The CEF susceptibility for MnPS3 was calculated using equation (12) with the values of
J and g which gave the best fit for the HTSE and D = 0. The solid curve in figure 1 shows
that it compares well with the exact HTSE susceptibility.

The CEF susceptibility expression (equation (12)) was fitted to the experimental data
for MnPSe3 by a non-linear least-squares algorithm. The best fit, shown as a solid curve in
figure 2, was obtained for J/k = −5.29 K, D/k = 26.64 K, J ′/k = −0.015 K, g‖ = 2.01 and
g⊥ = 2.45. At low temperatures the CEF susceptibilities diverge (177 K for MnPS3 and 100 K
for MnPSe3), since the denominator in equation (11) goes to zero. This temperature, however,
has no thermodynamic significance and should not be compared with experimental TN -values
since magnetic ordering in 2D isotropic and XY anisotropic systems is a consequence of weak
interlayer coupling [9].

The large difference between the anisotropies in the magnetic susceptibilities of iso-
structural MnPS3 and MnPSe3 is rather puzzling. In both compounds the Mn 3d electrons are
strongly correlated and localized, as reflected in their high spin-state values and the fact that
both are insulators with large optical band gaps. These compounds are best viewed as salts of
the chalcogenophosphate anion rather than as metal phosphorus sulphides or selenides [4]. In
neither compound would the trigonal distortion of the MX6 octahedra give rise to a ZFS unless
the ground state is admixed with a higher-lying state due to spin–orbit coupling. It is the latter
parameter, the spin–orbit interaction, which plays a crucial role in deciding the magnitude and
the origin of the ZFS in MnPS3 and MnPSe3. The spin–orbit interaction for 3dn ions in cubic
fields involves two parameters, ξ and ξ ′ [24]. The former acts within the t2 states and the
latter between t2 and e states. For a free ion, ξ = ξ ′ = ξ3d. The spin–orbit constants may be
evaluated using molecular orbital theory where t2 and e orbitals are expressed as mixtures of
the orbitals on the magnetic ion and those on the ligand:

ξ = ξ3d + λ2
πξL

ξ ′ = ξ3d − (1/2)λσλπξL.

In the above expressions, λπ and λσ denote covalency parameters and ξ3d and ξL are the spin–
orbit constants of the ‘free’-metal-ion 3d and ligand-ion 2p orbitals [24]. In situations where
the metal ions are the same, large differences in spin–orbit constants could arise from changes
in covalency and/or changes in the ligand contribution. In the case of MnPS3 and MnPSe3,
covalency is likely to be stronger for the latter and, equally important, the spin–orbit constant ξL

of Se2− (1463 cm−1) [25] is much larger than that of S2− (382.4 cm−1) [25] (ξMn2+ = 347 cm−1

[15]). As a consequence, even small changes in the covalency of the Mn–X interactions could
still lead to a large change in the spin–orbit constants and hence a larger ZFS in MnPSe3. The
role of the ligand spin–orbit contribution has been pointed out by various authors [14, 26];
e.g. the large variation in the ZFS parameter D in the EPR spectra of Cr2+ (S = 2) doped
in ZnS, ZnSe and ZnTe has been explained as arising from substantial changes in the ligand
spin–orbit contribution on going from S to the heavier Te [26]. MnPS3 and MnPSe3, however,
are probably the first examples in which changes in the ligand spin–orbit contribution cause
a change in the anisotropy of the macroscopic magnetic susceptibility. The large ZFS of the
Mn2+ ion gives rise to an unusually large XY anisotropy in the magnetism of MnPSe3.



3570 P Jeevanandam and S Vasudevan

Acknowledgments

The authors thank Nirmala Chandrasekharan for useful discussions. PJ thanks CSIR (India)
for a research fellowship.

References

[1] Klingen W, Otto R and Hahn H Z 1973 Z. Anorg. Allg. Chem. 396 271
[2] Brec R 1986 Solid State Ion. 22 3
[3] Joy P A and Vasudevan S 1992 Phys. Rev. B 46 5425
[4] Joy P A and Vasudevan S 1993 J. Phys. Chem. Solids 54 343
[5] Joy P A and Vasudevan S 1992 Phys. Rev. B 46 5134
[6] Wieddenmann A, Rossat-Mignod J, Louisy A, Brec R and Rouxel J 1981 Solid State Commun. 40 1067
[7] Kurosawa K, Saito S and Yamaguchi Y 1983 J. Phys. Soc. Japan 52 3919
[8] Wildes A R, Kennedy S J and Hicks T J 1994 J. Phys.: Condens. Matter 6 L335
[9] de Jongh L J and Miedema A R 1974 Adv. Phys. 23 1

[10] Cruse D A and Gerloch M 1977 J. Chem. Soc. Dalton Trans. 152
[11] Rushbrook G S and Wood P J 1958 Mol. Phys. 1 257
[12] Yu W-L and Tan T 1993 Phys. Rev. B 49 3243
[13] Yu M L 1989 Phys. Rev. B 39 622
[14] Francisco E and Pueyo L 1988 Phys. Rev. B 37 5278
[15] Griffith J S 1961 The Theory of Transition Metal Ions (Cambridge: Cambridge University Press)
[16] Lines M E 1974 Phys. Rev. B 9 3927
[17] Lines M E 1976 Phys. Rev. B 12 3766
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